
Understand how we can use the delta method to calculate SEs for functions of parameters
See also:

In the GLS section, we learned how to calculate \(var(\hat{\beta}_0 + X_i\hat{\beta}_1)\) using matrix multiplication:
\[\text{var}(X\beta) = X\Sigma X^T\]
where \(X\) is our design matrix, \(\Sigma\) is the var/cov matrix of our parameters:
\(X = \begin{bmatrix} 1 & X_1\\ 1 & X_2\\ \vdots & \vdots\\ 1 & X_n\\ \end{bmatrix}\) \(\Sigma = \begin{bmatrix} \sigma^2_{\hat{\beta}_0} & \sigma^2_{\hat{\beta}_0,\hat{\beta}_1}\\ \sigma^2_{\hat{\beta}_0,\hat{\beta}_1} & \sigma^2_{\hat{\beta}_1} \\ \end{bmatrix}\)
What if we are interested in non-linear functions of parameters?
\[Length_i = L_\infty(1-\exp(-k Age_i))\]
Options:
\[Length_i = L_\infty(1-\exp(-k Age_i))\]
If we estimate \(\theta =(L_\infty, k)\) using Maximum likelihood, and our sample size is large, we know:
\[\hat{\theta} \sim MVN(\theta, I^{-1}(\theta)) \text{ with: }\]
What if we want to calculate a confidence interval for the length at a particular age, \(Age_i\):
\(var[f(\hat{L}_\infty, \hat{k})] = var(\hat{L}_\infty(1-\exp(-\hat{k} Age_i)))\)
Taylors series:
\(f(\hat{\theta}) \approx f(\theta) + f'(\theta)(\theta - \hat{\theta})\) \(\implies \widehat{var(f(\theta))} \approx f'(\theta)\Sigma f'(\theta)^T |_{\theta=\hat{\theta}}\)
Let:
Delta Method
\(var(\hat{L}_\infty(1-\exp(-\hat{k} Age_i))) \approx f'(\hat{L}_\infty, \hat{k})\Sigma f'(L_\infty, k)^T|_{L_\infty = \hat{L}_\infty, k=\hat{k}}\)
In R:
deltavar function in the emdbook package to calculate the derivatives and variance; see Section 10.8 in the book%*% for matrix multiplication.